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TECHNICAL NOTE 3938

SIDEWASH IN THE VICINITY OF LIFTING SWEPT WINGS
AT SUPERSONIC SPEEDS

By Percy J. Bobbitt and Peter J. Maxie, Jr.
SUMMARY

In order to calculaste the induced loading on a store, missile, or
pylon situated in close proximity to a wing-fuselage combination, a
detailed knowledge of the flow field is required. The present paper
provides some of this needed informetlon by presenting equations and
charts that enable the determination of sidewash in the vicinity of semil-
infinite trianguler wings at small angles of attack. These results may
also be used directly in sidewash determinations for the conical part of
the flow exterior to wings having finite spans and chords. At points in
the flow field affected by the finite-wing weke or tip, additional con-
siderations are necessary to determine the sidewash. Both the subsonic-
wing and supersonilc-wing leading-edge conditions have been treated; hence,
sidewassh is obtainable for all supersonic Mach numbers and leading-edge
sweep angles for sweptback wings.

INTRODUCTION

The ever increasing use of externsl stores and missiles on aircraft
has emphasized the need for a method of predicting the loads acting on
these stores and missiles and also on the pylons by which they sre often
attached to the wing. Store, missile, and pylon loadings are required
in designing the pylon structure, in predicting the lateral stability
of aircraft, in determining the jettison characteristics of stores, and
in computing the trajectories of missiles.

A number of experimental investigations have been conducted in the
past several years in an attempt to galn some insight into the origin
of store loads and, in a few isolated cases, pylon loads. Through system-
atic tests on the effects of store position, store size, wing plan form, )
pylons of wvarious types, and Mach number, the understanding of the various
interference effects has been increased. However, due to the many vari-
ables involved in the airplane-store or alrplane-missile problem, there
remains a very definite need for an analytical or semiempirical method
capable of indicatlng trends (if not magnitudes) when the meny variables
involved are changed.
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One of the most important prerequisities to meking a calculation
of the store, missile, or pylon loading is a detailed knowledge of the
flow field in the immediate vicinity of the wing. In reference 1 an
extensive theoretical treatment of the pertinent flow fields at subsonic
speeds has been presented, together with some experimentel verification.
At supersonic speeds the picture is not quite so complete. The longi-
tudinal and vertical velocity components in-the vicinity of the wing
which are due to the wing angle of sttack Have been derived in refer-
ences 2, 3, 4, and 5, and some information related to the velocity com~
ponents in fuselage flow fields and wing-thickness flow fields may be
extracted from references 6 and 7. The lateral flow velocity in the
vicinity of the wing due to the wing angle of attack has not yet been
treated.

The present paper is concerned with the latter, that is, the analyt-
ical determination of the lateral flow velocity (sidewash) in the vieinity
of the wing due to the wing angle of attack. The methods used parallel
the linearized lifting-surface methods employed in reference 3 to deter-
mine the downwash in the flow field exterior to flat lifting triangles
of infinite chord. The analyses apply for 'all leading-edge sweep angles
for sweptback wings and supersonic Mach numbers, both the subsonic-wing
leading-edge and.supersonic-wing leading-edge conditions being considered.
It should be pointed out that the infinite-chord triangular-wing sidewash,
which is derived herein, mey also be used directly in sidewash determina-
tions for some regions neer wings having finite spans and chords. For
points affected by the wing weke or wing tip, additional considerations
are, of course, necessary (see ref. 5) and the expressions for the side-
wash velocity glven in the present paper represent only a part of the
total sidewash. The results of the investigation are presented in chart
form for various combinations of leading-edge sweep and Mach number.

SYMBOLS

The system of axes used in the analysis and the positive directions
of the velocities are shown in figure 1.

b span of trianguler wing . _
Cc constant of integration

c root chord of trianguler wing

Ei . imﬁfigary part of incomplete elliptic integral of second

En. - real part of indomﬁlete ellipfic integral of-second kind_
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)

complete elliptic integral of second kind with modulus

V1 - p2n®

E( o, k) incomplete elliptic integral of the second kind with
w \/1 -k 2
modulus k and sine amplitude w, f 20.1 dml
0 1/1 _ 0)12

Fi imaginary paxrt of incomplete elliptic integral of first

kind
Fn real part of incomplete elliptic integral of first kind
F(cn,k) incomplete elliptic integral of first kind with modulus k

)
end sine smplitude o, f o
0 ‘jl-wf V1-k2u>_L2
I.P. imaginary part
K modulus of elliptic integrals, | 1 - so¥
k' comodulus of elliptic integrals, k' = \/1 - k= = so°
My, free-stream Mach number, Voo
Velocity of sound in free stream
m cotangent of sweep angle of wing leading edge
z
X

P =
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1-\/1- %

8o =

Bm

u,Vv,w

A = sn(Fyp, k)

€,n
o = sn?(Fi,k*)

T

¢

Subscripts:
1

2

perturbation velocities in. x-, y-, and z-directions
complex sidewash function, v + iv
free-gtream velocity

harmonic conjugate of v

Cartesian coordinastes of field point with origln at wing
apex (the positive directions are indicated in fig. 1)

engle of attack, radians

Imaginary part of a complex veriable

BE+is ¥

complex verlable, ¢ = p + ig =

1+ \/l - (y/x)? - (z/x)?

complex incomplete elliptic function of first kind (real
part is given by p, and imsginary part by ug)

complex variables

real part of a complex variable

perturbation-velocity potential

refers to complex variable §
refers to complex variable 1 -
refers to imaginery pexrt of a complex function

refers to real part of a complex function
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PRESENTATION OF SIDEWASH EQUATTIONS

The methods used in reference 3 for the determination of the down-
wash in the flow filelds exterior to flat lifting triangulsasr wings of
infinite chord may also be used for the determination of the sidewash
in the flow fields exterior to these same wings. TFor this reason, this
section wlll be restricted primarily to the presentation of the sidewash
equations with the actual derivations given in appendixes A and B.

Sidewash equations presented will apply directly for points below
the right-hand panel of the wing; however, since the sidewash is anti-
symmetric with z (i.e., sbout the plane of the wing) and y, the signs
on the equation may be changed to give the sidewash for any point in
the field.

Subsonic-Leading-Edge Wing

The sidewash at a point (x,y,z) below the right-hand panel of the
11fting triengular wing, as developed in appendix A, 1s given by

v = (l ) 502)EGJE‘:~E§;§) - (Vai,so ) +

R R e e R
1- [ - (2 - Soh)“lldl

I A A A o
1 - [? - (2 - Soh)xé}cz

)

where

1 -\’1 - B2m2

fm

So=
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In order to calculste the A and ¢ functions in equation (1),
proceed as follows. First, calculate p and q:

. Px (2
sofp- (3] 63
y
q= P (3)

- p2f 2

and then calculate Tqs 81, Tp, 8and By

2 o
T = p//(pz - @ 802) +4p2g% + p2 - 2 4 82 +

-1

qua - q®+ 502)2 + Uplq? - -(pE - 92+ so2)J . ()

rgl/(pz - 502)2 + 4p2g2

5 :
81 = |[-p \[\/(pz - @@+ 502) + kp2¢2 - (pa - q2 +_so2) +

2 1
q\/‘/(pa - Q2+ 502) + 4p2g2 + p2 - g2 + o2 (5)

2
e V{p«? - Q2+ 502) + bp2g2
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\/[l + 502(p2 - qz)] 2 + ll.soh'que + 1+ 502(92 _ q2)
2T (6)

2
‘E‘/EL + 802(p? - qa)] + bsoltp2q?

2
/[1 + 302(132 - qa)] + bsolp22 - I:l + 802<p2 - q2)]

8o = (7

. 2
/3 EL + 562(e2 - qe)] + hsgtplel

Substitute Ty and 53 1in the equations for A and o given below
to determine A1 and oy and substitute T, and &y to obtain Ap

and ogo:

[1+-r2+52-'/(l+72+52)2 - k-'ra-J {1+ (l- ao#)(-rz+52) -‘/tl+ (l- 50'*)("2"'52)]2 - h(l- gok)ﬁ}

b1 - sof)s2

(8

A=

T2 + 82 - A
o= ’ (9)

T + 82 - A - [7\(1 - solt)(TE + 52) - ]

The elliptic functions E(\[E,soz) and E(\/l - ;32m2) in the expres-

sion for v (eq. (1)) may be obtained from tables (refs. 8 and 9) or by
series expansion.

Supersonic~Leading-Edge Wing

The equation for the sidewash in the region below the right-hand
panel of the wing and behind the Mach cone emanating from the wing apex
(see appendix A) is
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) 1+ Bm(? Z)
v = -——jééi———— ten~t = -
:rrVBamz - 1— 6202 _ lvl i <B Z)2 ] <B 5)2
tan™t o Bm(ﬁ %) (10)
ST
i

In the region behind the plane Mach wave off the wing leading edge
and ahead of the Mach cone from the wing apex, the sidewash is given by

vo—t (11)

Sonilc-lLeading-Edge Wing

When the wing leading edge is sonic, the sidewash expressions
(egs. (1) and (10)) simplify to

o g - 62 - 63

(12)

(V)Bnpl =

|I| \
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RESULTS AND DISCUSSION

Sidewash Charts

By use of expressions derived herein, the sidewash for =11 points
in the vicinity of infinite-chord triengular wings may be determined.
In figures 2 to T the variation of the nondimensional sidewash parameter
v Z :
—— with B T end % for pm parameters of 0.k, 0.6, 0.8, 1.0, 1.25,

(e

[-<)
1.5, 1.75, 2.0, and 2.5 has been presented. Sidewash for pm values
falling between those just enumerated may be obtained with sufficient
accuracy in most cases by interpolation. In the succeeding discussion

of the figures, the nondimensional sidewash Fv_ will be referred to
7
=)

simply as sidewash.

Sidewash Variastions With y end =
By essuming f and x +to be fixed quantities in the sidewash vari-

ations with 8 ;Z{- and 8 %, 1t is possible to meke a number of observa-

tions on the varietion of sidewash with vertical and spanwise distances.
Another and more vivid method of picturing the flow is to construct con-

tour plots of the sidewash, that is, lines of equal %— For this reason,

[~}
contour plots have been constructed for pm values of 0.8 and 1.5 and
the results are shown in figures 8 and 9.

Subsonic-~-leading-edge case.~ On the surface of the subsonic-leading-
edge wing (z = 0), the sidewash increases from a zero value at the wing
plane of symmetry (y = 0) to infinity at the wing leading edge. (See
fig. 2.) Outboard of the wing yet in the plane of the wing extended,
the sidewash is zero. For a finite value of 2z, the sidewash increases
with y from zero to a maximum, then decreases to zero at the Mach cone
from the apex. For a given y value as z 18 Increased (i.e., es =z
becomes more negstive), figures 3 and 8 show that the magnitude of the
sidewash decreases except in the region between the wing leading edge and
Mach cone where there is an increase to a maexlimum from the zero value at
the plane of the wing extended followed by & decrease.

As the values of the parameter pm (for Bm vslues less than 1)
ere decreesed, the flow field below the wing remalns similer in appearance
and the magnitude of the sidewash decresases.
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Sonic-leading-edge case.- When the wing lesding edge is sonilc, the
sidewash is zero on'the Mach cone everywhere except at the point where
the wing leading edge and Mach cone coincide. It can be seen in fig-
ure 4 that at this point the sidewash is infinite.

Figure 5 presents. the variation of sidewash with =z for a number
of y values and shows that for smell values of y +the sidewash decreases
very slowly with 2z from'its value at z = O over a large range of 2z
values and drops rapidly near the Mach cone. For the larger values of vy,
the sidewash decreases more rapidly at the low negetive values of z. At
a fixed negative value of 2z, the sidewash increases from zero at the plane
of symmetry to a maximum and then drops sbruptly to zero at the Mach cone.

Supersonic-leading-edge case.- In order to facllitate the discussion
of the supersonic-leading-edge sidewash, & crosgs section of the wing and
Mach cone system is given in the following sketch:

o) B

1O Bm _ l
. A

Leading edge

Plane Mach wave
off leading edge,

3= BB /B2 |

~ Tangency point

m
T
t
1
i
I
!
|
i
t
|
|
I
1

v ,32m2— I
Bm

-1.0

Mach cone

N T

B

On the Mach cone emensting from the wing apex for the supersonic-leading-
edge wing, the sldewash can be considered as having three different values.
For that portion of the Mach cone that separates the regilon behind the Mach
cone from the region between the Mach cone and the plane Mach wave off the
leeding edge, the sidewmsh has a constant value (eq. (11)). At the point
where the plane wave off the leading edge 1s tangent to the Mach cone from
the wing epex, the sidewash has half the constant value given by equa-

tion (11). (See figs. 7(d) and 7(e).) Below the tangency point the side-
wash has a zero value.

The sidewash on the surface of the wing increases with y from a
zero value at the wing plane of symmetry (y = O) to a finite value at
the Mach cone from the wing apex. For points on or below the wing out-
side the Mach cone from the wing apex but within the plane Mach wave off
the wing leading edge, the sidewash has a constant value (eq. (11)).



NACA TN 3938 11

The variation of sidewash with y (see figs. 6 and 9) for a given
negative value of =z, less than the negative 2z value of the tangency
point, is very similer to the sidewash variation on the wing. For nega~
tive values of 2z greater than that of the tangency point, the sidewash
increases gradually with y until it reaches a maximum and then drops
abruptly to zero at the Mach cone.

Figures T and 9 show that the variation of sidewash with =z for a
fixed value of y ie very slight over a lerge range of 2z values. Near
the Mach cone, the sidewash drops abruptly to a zero value if the y wvalue
is less than that of the plane-wave tangency point and rises abruptly to
a constant value if the y-coordinate 1s greater than that of the tangency
point.

Increasing pm (Bm values greater than 1) causes a decrease in the
maximum values of the sidewash. It is evident that as Ppm 1s increased
the point of tangency of the leading-edge plane wave moves nearer to the
wing symmetry plane and the region between the leading-edge plane wave
and the apex Mach cone increases in size relative to the reglon behind
the apex Mach cone.

Sidewash Variations With x

In order that the longitudinal or chordwise variations of sidewash
may be conveniently plotted and more easlly visuaslized, the semi-infinite
triangular wing has been cut off at a distance x = ¢ from the wing apex.
The maximum distence behind the apex of the finite triengulsr wing that
the sidewash can then be represented, by the equations derived herein,

is
X=c¢C+ Bz

or nondimensionally

oM

=1+Bmﬂz§ (13)

where b/2 is the semispan of the finite-chord triangular wing. Beyond
the x value of equation (13), the flow field is affected by the finite-

wing wake.

The chordwise variation of the sidewash has been plotted in figures 10
and 11 for two values of Bm, a subsonic-leading-edge value of 0.8 and a
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supersonic-leading-edge value of 1.5; three spanwise locatlons, I = 0.25,
? b/2
0.50, and 0.75; and three vertical heights, F?*é = -0.1, -0.2, and -0.3.

For pm = 0.8, figure 10 shows that the sidewash rises rapldly to a maxi-
mum from its zero value at the Mach cone and then decreases at & much more
gradual rate to a finite value at the plane Mach wave off the trailing
edge. As previously noted In the discussion of figures 2 and 3, the side-
wash magnitudes incresse in going from an inboard to an outboard station
and decrease (though only slightly over the rear portion of the wing) as
the vertical distance is increased.

For the supersonic edge, Ppm = 1.5, in figure 11, the most notable
feature of the chordwlse variations is the abrupt drop in the region
immediately behind the Mach cone from the wing epex. In the rearward
portions of the wing there is little change of sidewash wlth vertical
height. This is consistent with previous observations. (See figs. 6,

7, and 9.)
CONCLUDING REMARKS

Before an attempt can be made to calculate the aerodynamic forces
acting on stores or missiles situated in the immediate viecinlty of wings,
1t is necessary to have a detailed knowledge of the flow fleld near the
wing. The present paper provides some of this needed information by
presenting calculations of the lateral flow exterior to lifting, semi-
infinite, trianguler wings traveling at supersonic speeds. These solu-
tions mey also be used directly in determining the sidewash in some
regions above and below finite wings. Charts are included from which
the sidewash can be obtained, either directly or by interpolation, for
all wing sweepback angles and supersonlc Mach numbers.

The methods used in deriving the sidewash are based on linearized
theory; hence, the results are subject to its limltations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 6, 1956.
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APPENDIX A
DETERMINATION OF SIDEWASH EXPRESSIONS

The purpose of this appendix is to give the derivation of the side-
wash equations. The derivations presented are carried out for B =1 so
that the sidewash and associated formulas given in subsequent sections
are dependent only on m, y/x, and z/x. By use of the Prandtl-Glauert
rule, which demonstrates that the flow-field veloclties at any Mach number

must depend on fm, B %, and B ;, the sidewash expressions may be

rewritten to apply for all Mach numbers. (See egs. (1), (10), (11), and
(12) in the main body of this paper.)
Subsonic-Ieading-Edge Case . :

In reference 4, H. J. Stewart gives the following differential equa-
tion (with a change in notation) for the complex sidewash velocity:

av _ _-i2Vps’ (1+ 32 - £3) (1)
as mE CJEft_;§> [ng + soe)(gzsoz + 12]3/2
where
1 - 1 - me
8g = -
and
Z
L -p+1g - — 21 (12)
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Integration of equation (Al) leads to

v + iV

<
Il

-12V 08, )EE(E” m) -

m@.-s&ﬁE( 1-nf

F(g, m)+E<n,m>-F<n,m]+c (43)

The complex varisbles & and 1 originate through varisble changes
necessary in the integration of equetion (Al) and their relation to ¢
is given by

,’CE + s02
1

\fl + SO2§2

It is convenient to designate the real and imaginary parts of these new
variables by Ty 81, Tos and 62 s0 that

e
I

= T1 + ial

and

Tys By5 T, and By in terms of y/x and z/x are given in the text . __ _

by eas. (2), (3), (4), (5), (6), and (7)). The constant C in eque-
tion (A3) is determined by the condition’that the sidewash (real part of

eq. (A3)) must be zero on the Mach cone.
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Of interest here is the real part of equation (A3), that is, the side-
wash. Thus, the problem remsining is to find the imaginary parts of the
elliptic integrals E and F in equation (43). With

F<~r * 15,\’1 - so”) = Fy,

£ 1F;
and
E<T £ 18,\/1 - sol") = By + 1B
the equation for the sidewash may be written
v = T2 KEi)l - (F1)y - (Ba), + (Fi)z}' ¢
a1 - sol‘)E( 1- @)
(ak)
Reference 3 gives
Fi = F (VOs0° )
Thus
(Fy), = F (\[Ei,sf) (45)
and |

(F1)2 = F(\[o'_2,502) (a6)
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In appendix B the imaginary part of the elliptic integral E with complex
ergument has been derived and yields

(Bi), = -B (\/Tl,soz) +F (\]?1:502) +

[1 - (2 - 504)7\1:!\/:1 \jlf oy \II:L_“- 5oty

1.1 (1 ) 304)7\1]61 (A7)
and
() = 3 () 7 ()
[1 - (1 - sch)7\2:| Vop V2 - 0p \1 - sotap (48)

1- [1 -(1- sol*)xe:’cz

By substituting equations (A5), (A6), (A7), and (A8) into equation (Alk),
the sidewash is found to be

2V 8o

el () { (ree’) s

l' l‘soh%l:l\["‘ldl‘°1\11'8°%1+E<\10_82)
: 3 2 =
I:- l-S 7\]0’1 - . e

[-¢ >]ml-ce\/1-so .
[ 1- s, xg}z,-
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In order to obtain the equation for Vv +that is presented in the text,
m (in the denominator of (eq. (A9)) has been replaced as follows by its
equivalent in terms of s4:

230

2
1+ 8q

Also, 1t has been found that the boundsry conditions are satisfiled with
the constant of integration set equal to zero.

Supersonic-leading-~Edge Case

It has been demonstrated in reference 2 that the flow field exterior
to a lifting or nonlifting semi-infinite triangular wing with supersonic
leading edges is the sum of the flow fields of two lines of pressure
sources coincident with the wing leading edges. Directly obtained in
reference 2 by virtue of this result is the longitudinsl perturbaetion
velocity u for points in the flow field. The wu velocity below the
lifting wing and behind the Mach cone from the wing apex is given by the
following equation:

v o= Ve |oogml X - oY +
:tdm? -1 \(y - mx)2 - 22(n2 - 1)
cos™t X + oy (A10)
J(y’+ mx)2 - 22(m® - 1)

end for points between the Mach cone and the plene wave off the leading
edge is given by

W= (a11)

It should be noted theat the positive square roots are to be taken in the
denominator of the arc cosine terms of equation (A10) in conjunction with
the principal values of the arc cosines. Eqguetions for the vertical per-
turbation velocity or downwash have been derived in reference 3. In the
remainder of this section the laterasl perturbstion velocity, referred to
herein as sidewash, will be obtained by the procedure used in reference 3.
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By considering the relationship between the perturbation-velocity
potential and the stresmwise velocity component,

oy

Ax

expressions giving the perturbation-velocity potential ¢ and lateral
veloclity component v may be written

¢ = * u(x',y,z)dx’ (A12)
V=M=§_ Xux’ A '
E & U/;O (x',y,2)dx (A13)

The integration in equations (Al2) and (Al3) is along a line parallel to
the x-axis from a polnt x5, where the potential ¢ and velocity u are

zZzero, to a point in the region where the velocity potential or sidewash
1s desired. N

Two possible peaths of integration are shown in figure 12 for points
behind the apex Mach cone. One path intersects both the plane wave and
Mach cone whereas the other intersects only the Mach cone. Mathematically,
it can be shown that the first of these integration paths corresponds to
the condition that x < my and the second, to the condition that x> my.
Consider the first of the two paths of integration. The velocity potential
et a point x from equations (Al0), (All), and (A12) is given as follows:

2.,2
+2
¢=_V°°a.m fy a_xi_’_l

x 1
e
= cos” ax' +
m2 - 1Yy _ 2z 21 % Y4zl ,_\/(y_mxl)2_22(m2_l)
.m _

m

sl X+ oy ax’ (A14)

1 ¥
= co
: ‘f;)y2+z2 . V(y +mx')2 - z22(m? - 1)
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Performing the first two integrations and then differentlating with respect
to y gives rise to

_Vmam v - € _ N
7T
\ly2 + z2 m\lm2 -1 Qy?- + z2

+

x w2 - x'y - mz? o

\y2+22 \!x’2 - y2 - 22 Ey - mx')2 - z2(m? - lﬂ

X mx12 + x‘y - ng d_x' (Als)
L[\:/Y2+22 \/;‘2 - y2 - 22 Ey + mx')2 - 22(m? - lﬂ

The first two terms in equation (Al5) are obtained from the first integral
of equation (Alk). The third and fourth terms result from differentiating
the first arc cosine integral in equation (Alk4) and the last term in equa-
tion (Al15) comes from differentiating the second arc cosine term of equa-
tion (Alk). Note that the first and third terms of equation (Al5) cancel.
The first integral in equation (A15) when evaluated (remember when sub-
stituting the lower limits that x < my) gives

— 31 [tan-1 X - My + \/m2 -1 cosht X ___ . -’ét-
m\lmE-l \Jme—l\[x2-y2—22 \}y2+22
(A16)

The evaluation of the second integral in equation (Al5 be obtained
from the evaluation of the first integral in equation (A15) (expres-
sion (A16)) by replacing y by -y and changing the sign before the

% term. This procedure yields

L XTIy +\’m2-lcosh"l-—3——--

—2 |ten~1
m\lm2-l \[me—lJ;z-yz—za Vy2+z2

N A

(a17)
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When expressions (Al6) and (AL7) ere substituted for the integrals in _
equation (Al15), the sidewash behind the apex Mach cone for the case where
x < my is seen to be

V& -1 X - my - tan X + my

-_:.'c\!mg -1 ) \/m2.- 1 \/}? - y2 - z2 T \/m = 1 r

(418)

When the path of integration to the point x intersects only the
Mach cone, the sidewash from equations (A10) and (Al3) may be written as

X X - my .
v 8 f cos"l L ax' +

rr\,m =1 By y2+z . \/(y - mxl)2 - 22(m2 - l)

X X. +
j cos™t 1T ax! (A19)

yo+22 \ﬁ + mxl)2 - zz(mz' - 1}

Cerrying out the differentiation in equation (Alg) yields

X
_Vwm f mx'2'x'V' 2 ax' -

o422 2 - 32 - Zzl':y - mx')2 - 22w - 1)]

* mx'2 - x'y - mz? - ax!

./: 222 x12 - 42 - Zz[(y +mx')2 - ZéT(me _ 1)]
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which when integrated with x> my resulis in the following equation:

v=-—2___ftan” il + \lm2 -1 cosh™t X -

1l X -
n Jm? -1 Jm? - l'd;z - y2 - 22 JyE + z°

tan~1 X W - dm? -1 cosh™l X __
Vm? -1 V¥2 - y2 - 22 y2 + z2

_ Vcoa' t&n-l X - my - tan-l X + my

:tJ 2.1 Vme -1 Vxe - y2 - 22 V;? -1 V;é - y2 - 22

(A20)

It can be seen from equations (A18) and (A20) that the sidewash behind
the Mach cone is given for all points by the same expression.

The sidewash in the region between the plane Mach wave off the leading
edge and the MHach cone below the right wing panel is given by

voE (A21)
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Sonlc-leading-Edge Case
The sonic-leading-edge sidewash is most simply obtained from equa-

tion (A20). Setting m equal to 1 in equation (A20) gives rise to an
indeterminancy which may easily be evaluated to yield the required sidewash

) "’Vw“ﬂl 'g)e ' <%)2 - (422)

f-@F]

v
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APPENDIX B

EVALUATION OF IMAGINARY PART OF AN INCOMPLETE ELLIPTIC

INTEGRAL OF TEE SECOND KIND WITH A COMPLEX ARGUMENT

In reference 3 the real part of the incomplete elliptic integral
E(T+18,k) and the real and imaginary parts of the elliptic integral
F(T+15,k) have been derived. The purpose of this appendix is to obtain
the imaginary part of the elliptic integral E(7%id,k) which is necessary
in determining the sidewash. (See eq. (Ak).)

The incomplete elliptic integral of the second kind with a complex
argument may be written as

E(T+id,k) = f e at (B1)
0 V1-t°
where
k = \'l - Soh-
When the Jacobian transformation
T+ 18 = ¢ = sn(u,k) = sn(urtui,k) (B2)
is introduced, equation (Bl1) becomes
F iR
r—1i
E(T+8,k) = f an® (1, %)dp (B3)
0

Evaluation of the real and imaginary parts of the upper limit of equa-
tion (B3), that is,

d

T+ ‘
F iiFi=f
i 0 ﬁ-gz\/l-kzge

is given in reference 3. (See also egs. (A5) and (A6).)
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As pointed out in reference 3, the Integration in equation (B3) is
most conveniently performed in two steps: first, along the real axis
to F,., and then parallel to the imaginary axis from F. to F.* iFy.

Thus, equation (B3) becomes i
Fr _ . Fy o
E(T+18,k) = ‘/P dn® (uyp,k)dpy * 1 \]P an” (Fytipg,k)dpg (B4)
0] 0]

The first integral in equation (B4) is real and may be excluded from
further consideration. It is convenient in determining the imaginary
part of the second term to expand the delta-smplitude elliptic function
with the ald of the following formule given in reference 8, page 24:

dn(Fr;k)cn(Ui:k')dn(ui;kl) _ ikesn(Fer)cn(Fr:k)Bn(“i)k')

dn(Friiui:k) = ¥
2 2 ) 2 2
1 - sn"(ui,k")dn"(Fp,k) .. 1 - sn“(p1,k')an"(Fp,k)

With the use of the relationship in the second integral of equation (B4),
the imaginary part of E(7+id,k) is given by

Fi dne(Fr,k)_cn2(u1,k')dng(ui,k')
I.P.[E(t+18,k)] =t j; P Ea

*en? (Fy, k)en? (Fp,k)sn2(ug, k' )
[1 - s02(u1,k")an2(my, k)] 2

dpy (B5)

By use of the integration formules given on pages 218 and 219 of refer-
ence 8, the imaginary pert of E(Tii&,k) in terms of Jacobian elliptic
functions becomes -

I.P.[E(Ti‘_i&,k)] =+ [Fi(sn Fi,k') - E(sn Fi,k') +

dne(Fr;k)Sl’l(Fi;k')Cn(Fi;k')dn(Fi,k'j (56)

1 - dn?(Fp,k)sn?(Fq,k')
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From the change in variable of equation (B2), that is,
T + i8 = sn(FptFy,k)
and by defining A and o as follows:

A

Sne (Fr:k) (BY)

o = sn°(Fy,k') (88)

reference 3 has shown that T and & may be related to N and o by

12
T2 _ 7\(1 -k 0') (B9)
(1 - o+ ¥2\0)2
52 _ o(l - o) (1 - A)(1 - ¥42N) (510)
(1 - o + k2\0)2
and
N [1+1-2+52-‘Kl-i--r‘?+52)2 _1;1-2]{14.];2(-.-2.;.52) -\”:1+k2(-r£+52i]2 -hkz-rz}
= (B11)
4272
2+ 82 - A
o= (BL2)

T2+52-7\-[7\k2(72+82)-1]

Other useful relationships which may be formed by use of equations (BT)
and (B8) are

en(Fr,k) = 1 - A (B13)

an(Fp,k) = ,/1 - XA (B1k)
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en(Fi,k') = J1 - o (B15)
an(Fi,k') = \1 - k'2¢ - (B16)

By use of the relationships given in equations (B7), (B8), (BL3), (Bl4),
(B15), and (Bl6), the imaginary part of the elliptic function E(t+i8,k),
defined by equation (B6), can now be written in terms of A, o, and X

as

I.P.[E(Ti'i&,k)] -+ [F(\]E,k') - E (\/E,k') +

(1 - k) Jovi - oA - k'zo:]
1 - (1 - X*A)o

In equations (A6) and (A7), k and k' have been replaced by their

equivalents /1 - soE and 502. -
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Figure 1.- Sketch of supersonic-leading-edge wing showing system of axes used in snalysis and
the posltive directions of the flow veloclties and angle of attack.
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Tigure 2.- Variation of the subsonic-lea.d:l.ng-—edge gideva
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Figure 3.~ Variation of the subsonic-leading-edge sidewash with ﬁ% for a range of Bl;-
and pm values.
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(¢) PBm = 0.8.

Figure 3.~ Concluded.
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Pigure 4.~ Variation of the sonic-leading-edge (Bm = 1) sidewash with B%

for a range of BZ values.
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(a) Pm = 1.25.

Figure 6.- Variastion of the conical part of the supersonic-leading-edge
sidewash with B% for a range of BZ and Pm values.
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Figure 10.- Chordwise variation of sidewash at three spanwise positions
and three vertical heights for a subsonic leading edge. Pm = 0.8.
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Flgure 12.~ Two paths of integration for obtaining the velocity potential end associate notation.
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